

COSMIC

COmpression-Shearing Method – understanding Interfaces in metal Composites

MAIN PARTICIPANTS

^a Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon, Écully cedex, France ^b Institute of Fluid Science Tohoku University, Sendai, Japan ^c School of Engineering, Tohoku University, Sendai, Japan

Contact: julien.fontaine@ec-lyon.fr, hiroyuki.miki.c2@tohoku.ac.jp

OVERVIEW (keep within this page)

Starting year: 2016 **Current researchers** (permanent/non-permanent): 5 person-month/year

Positioning (Multiple selection allowed – total 100%)	Transpor tation	Energy	Eng. for Health	Include partner from □ Outside ELyT □ Industry Main funding source(s) ☑ Public project(s) □ Industrial □ Own resources				
Materials and structure design	5 %	50 %		IFS CRP/LyC project? □ Yes ⊠ No For main projects: Agency / year / name of project (up)				
Surfaces and interfaces	15 %	30 %		to 3, past projects in gray)JSPS, 2019-2022, Grant-in-Aid for Challenging Research				
Simulation and modeling				 JSPS, 2015-2020, Grant-in-Aid for Scientific Research Frontier Research Institute for Interdisciplinary Sciences, TU/2016-2018/ International Collaborative Research 				
Other:				Project Estimated annual budget: 10,000 EUR				

Highlights & Outstanding achievements (3-5 bullet points) A double degree student (Sho Takeda) took a degree from TU. Two publication has been accepted in Tribology Online. Project have been partly granted from JSPS. Illustration (5x5 cm² max) Metages and the state of th

PROJECT DESCRIPTION

Background (10 lines max; Calibri 11)

In recent years, requirements for the material property such as a high strength and/or high toughness are increasing with development of machine and mechanical system. Materials processing is one of the important techniques to improve those properties. Many scientists are working in this field and several processing for manufacturing metal and composite such as casting, and powder metallurgy have been proposed. Our research group has been focusing on a novel powder molding technique, COmpression Shearing MEthod at Room Temperature (COSME-RT) as the method to consolidate metal powder into thin plate directly. In this method, dissolving at high temperature is not required and metal plate can be formed without coarsening of crystal grain and making compound. Consolidated metal plates indicate high mechanical strength according to refined crystal grains.

Key scientific question (2 lines max; Calibri 11)

Development of new molding technique using solid-phase bonding of powder material. Research on the principle of local solid-phase bonding on metals, etc.

Research method (8 lines max; Calibri 11)

COSME-RT has attracted attention as the novel method of solidifying metal powder. The metal powders are solidified by the enforced plastic flow, and external heating is not required. In this project, the possibility of compacting the metal powder and the composite between metal and other material, polymer, ceramics and compound etc., using COSME-RT will be investigated, to clarify the interparticle bonding of powder particles during the compression and shearing process. With development of this technique, we would like to form the multifunction material which shows the good electrical and friction properties by a simple solidifying process as a practical material.

Research students involved (gray color for previous years)

Ph.D. candidates (years, institution):

• Sho Takeda (2015-2018, DD TU-ECL)

Master/Bachelor students (years):

Visits and stays (gray color for previous years)

FR to JP (date, duration):

- J. Fontaine (CR CNRS), Stay at IFS (TU, September 2019 (2 days)
- J. Fontaine (CR CNRS), Stay at FRIS (TU, January 2018 (2 days)
- J. Fontaine (CR CNRS), Stay at FRIS (TU, October-November 2017 (1 week)

JP to FR (date, duration):

- H. Miki (Assoc. Prof.), Stay at LTDS (ECL), December 2018 (4 days)
- S. Takeda (DD PhD), Stay at LTDS (ECL), December 2018 (2 weeks)
- S. Takeda (DD PhD), Stay at LTDS (ECL), February-March 2018 (6 weeks)
- H. Miki (Assoc. Prof.), Stay at LTDS (ECL), September 2017 (1 week)
- H. Miki (Assoc. Prof.), Stay at LTDS (ECL), June 2017 (1 week)
- S. Takeda (DD PhD), Stay at LTDS (ECL), April-July 2017 (3 months)
- H. Miki (Assoc. Prof.), Stay at LTDS (ECL), January 2017 (1 week)
- S. Takeda (DD PhD), Stay at LTDS (ECL), January-March 2017 (2 months)

COMMUNICATIONS AND VALORIZATION

Journal publications (gray color for previous years)

	Authors	Title	Journal	Vol.	pp. / ID	Year	DOI	
1	S. Takeda, H. Miki, J. Fontaine,	Interparticle Bonding of Cu Powder	Tribology	13(2)	43-49	2018	doi: 10.2474/trol.13.43	
	IVI. GUIDERT, H. Takeishi, T. Takagi	under Repetitive Unidirectional Friction	Unline					
2		Role of MoS ₂ Addition in the		12/1)	15-19	2018		
	S. Takeda, H. Miki, J. Fontaine, H.	Consolidation of Metal from Powder to	Tribology				doi: 10.2474/trol 12.15	
	Takeishi, T. Takagi	Plate by the Compression Shearing	Online	13(1)			001. 10.2474/001.15.15	
		Method at Room Temperature						

Conferences (gray color for previous years)

	Authors	Title	Conference	Date	City	Country	DOI (if applicable)
1	Sho TAKEDA, Hiroyuki MIKI, Julien FONTAINE, Matthieu GUIBERT, Hiroyuku TAKEISHI, Toshiyuki TAKAGI	Transition of Solid-phase Dynamic Alloying Behavior of Powder Particles under Repetitive Tangential Force	ELyT Workshop 2019	10 March 2019	Osaki	Japan	
2	Sho TAKEDA, Hiroyuki MIKI, Julien FONTAINE, Matthieu GUIBERT, Noboru NAKAYAMA, Hiroyuku TAKEISHI, Toshiyuki TAKAGI	Solid-phase interparticle bonding of pure cu powder particles under repetitive unidirectional friction experiment	The 5th Asian Symposium on Materials and Processing (ASMP2018)	7 Dec. 2018	Bangkok	Thailand	
3	S. Takeda, H. Miki, J. Fontaine, M. Guibert, N. Nakayama, H. Takeishi, T. Takagi	Transition of Dynamic Elasto-plastic Contact Behavior of Pure Cu Powder	15th International Conference on Flow Dynamics	7-9 Nov. 2018	Sendai	Japan	
4	S. Takeda, H. Miki, J. Fontaine, M. Guibert, T. Miyazaki, T. Takagi	Mechanism of interparticle bonding of metal powder by repetitive unidirectional friction process, Conference on Material Mechanics	Conference on Material Mechanics M&M2017	9 Oct. 2017	Sapporo	Japan	
5	S. Takeda, H. Miki, J. Fontaine, M. Guibert, T. Miyazaki, T. Takagi	Interparticle Bonding of Metal Powder under Repetitive Unidirectional Friction Force	14th International Conference on Flow Dynamics	1-3 Nov. 2017	Sendai	Japan	